
Département d’Informatique
CMI Image 1ère annéeProjet d’Infographie 3D

Ce projet est divisé
en trois parties pouvant
être traitées indépen-
damment les unes des
autres. Dans une qua-
trième partie, on pourra
réunir le résultat des
trois premières parties.
L’objectif final est de
créer un paysage mon-
tagneux avec un lac et
de peupler ce paysage
d’objets ou de person-
nages. Une grande den-
sité au niveau de l’eau
et plus clairsemé au
fur et à mesure qu’on
monte. Le barême est
indicatif. FIGURE 1 – Une montagne générée par l’algorithme décrit ci-dessous

1 Construction d’un terrain montagneux (7 points)

1.1 Modélisation
Vous écrirez les fonctions de cette section dans un fichier appelé paysage.py.

1. Écrire une fonction hauteursAleatoires qui admet deux arguments : un objet polygonal objet et un
flottant hauteur. Cette fonction ne retourne aucune valeur. Elle parcourt tous les sommets de l’objet donné
en paramètre et ajoute à la hauteur (composante z) de chaque point une valeur aléatoirement choisie entre
-hauteur et hauteur.

2. Écrire une fonction subdiviseAretes qui admet un argument : un objet polygonal objet. Cette fonction
ne retourne aucune valeur, mais elle subdivise chaque face de cet objet. Cette subdivision consiste à insérer
un sommet au milieu de chaque arête et de chaque face. Ainsi chaque face est transformée en quatre faces
coplanaires.

3. En utilisant les fonctions ci-dessus, écrire une fonction creerMontagne admettant 4 paramètres : une chaîne
de caractères nom, représentant le nom de l’objet à créer, un nombre largeur, un nombre hauteur et
un entier Nsubdiv. Étant donnés ces trois nombres, cette fonction devra créer une montagne de largeur
largeur de hauteur approximative hauteur et dont la résolution est déterminée par Nsubdiv. La valeur
de retour de cette fonction devra être l’objet créé. L’algorithme à implémenter est le suivant :

L’objet de départ est un carré (plan) dont le nom est la valeur du paramètre nom. Ce carré devra être de
côté largeur avec 4 sommets. À Nsubdiv reprises, il faudra faire les opérations suivantes :

(a) Parcourir tous les sommets de l’objet et déplacer ces sommets de façon aléatoire le long de l’axe z.
Le déplacement est un nombre choisi aléatoirement entre -hauteur et hauteur.

(b) Subdiviser chaque face de l’objet.

(c) Diminuer hauteur.

1



Comment allez-vous diminuer hauteur? En soustrayant une valeur à chaque itération? en divisant par une
valeur? Autrement? L’algorithme est déroulé dans les figures qui suivent.

FIGURE 2 – Départ : un plan de 4 sommets FIGURE 3 – Déplacement aléatoire d de chaque sommet
(avec d ∈ [−hauteur, hauteur])

FIGURE 4 – Subdivision FIGURE 5 – Diminuer hauteur. Déplacement aléatoire d
de chaque sommet (avec d ∈ [−hauteur, hauteur]).

FIGURE 6 – Subdivision FIGURE 7 – Diminuer encore hauteur et déplacement d
de chaque sommet (avec d ∈ [−hauteur, hauteur]).

FIGURE 8 – Subdivision FIGURE 9 – Résultat après 8 itérations en partant de h = 7

4. Que se passe-t-il lorsque vous lancez cet algorithme plusieurs fois ? Est-ce que vous obtenez la même forme
de montagne? Faites de façon à ce que, lorsque vous aurez obtenu une forme de montagne satisfaisante, vous
puissiez, à chaque fois, obtenir la même forme. Indication : à quoi sert la fonction seed du module random?

2



5. Écrire une fonction creerLac, admettant un paramètre un flottant largeur. Cette fonction devra créer un
plan ayant une face dont le nom sera lac. Ce plan représentera la surface d’un lac. La valeur de retour de cette
fonction sera l’objet ainsi créé. Il ne sera pas nécessaire de subdiviser le plan du lac pour avoir des vagues.

6. De la même façon, écrire une fonction creerCiel prenant en argument un flottant rayon. Cette fonction
devra créer, une sphère appelée ciel de rayon supérieur ou égal à 100 représentant le ciel. La valeur de retour
sera l’objet effectivement créé.

7. À présent, on cherche à composer le paysage. Vous appelerez les fonctions creerLac et creerCiel une
seule fois et vous laisserez ces objets en (0, 0, 0). Par contre, je vous demande d’appeler creerMontagne
plusieurs fois, avec des formes différentes, et de placer les différents objets obtenus à des positions, orientations
et échelles qui, pour vous, produisent un paysage intéressant. Créer une caméra pour matérialiser le point de
vue que vous avez choisi. Créer également une ou plusieurs sources de lumière qui mettent le mieux en valeur
le relief de votre paysage. Il n’est absolument nécessaire que vous assembliez ces différents massifs pour qu’ils
ne forment qu’un objet. Vous pouvez très bien les laisser bien séparés. Mais, vus depuis votre caméra, ils
doivent sembler former un paysage cohérent. De même, le bord du carré représentant le lac ne doit pas être
visible depuis la caméra.

8. Sauvegarder la scène dans un fichier appelé montagne.blend et noter la place qu’elle occupe sur le disque.
Un des grands intérêts de la génération des modèles par script (appelée modélisation procédurale) est qu’elle
évite de stocker de lourds modèles sur le disque. Il suffit de les régénérer à chaque fois à partir d’un script. Et le
volume d’un script sur un disque est minime (quelques kilobytes). Je vous demande de noter tous les réglages
et les opérations que vous avez faites pour que tout ce qui précède puisse être régénéré par script. Si vous
réussissez cette question, il ne sera pas nécessaire de me rendre la scène montagne.blend mais seulement
le script qui a permis de la générer.

1.2 Shading
Créer manuellement (et non par script) des matériaux et des textures pour les montagnes, le lac et le ciel. Je vous

demande de donner à vos matériaux des noms porteurs de sens (par exemple mat_ciel ou mat_montagne1).
1. Pour le ciel, concevoir un matériau et une texture de façon à ce que l’aspect du ciel ne dépende pas de l’intensité

ou de la position des sources de lumière ;
2. Pour l’eau, concevoir un matériau transparent avec de la réfraction et de la réflexion. Ne pas utiliser de texture

de couleur, mais seulement une texture procédurale de type Noise pour créer des vaguelettes. Je vous demande
de régler la fréquence et l’amplitude de ce bruit pour être en adéquation avec l’échelle de la scène et, en
particulier, avec l’échelle des personnages ou objets que vous y aurez placés (section 4).

3. Pour les montagnes, concevoir une texture de couleur et une texture de normal (bas-relief). La texture de
couleur peut être une texture explicite (une image) mais la texture de relief doit être une texture procédurale de
noise permettant de reproduire des strates comme sur la figure 1.

4. Il n’est pas du tout impossible de générer tous les matériaux, textures et graphes de rendu par script, mais cette
tâche peut s’avérer assez fastidieuse. C’est la raison pour laquelle je vous propose de les conserver dans la
scène. Donc une fois que vous êtes satisfaits de vos matériaux, sauvegarder la scène sous matMontagne.blend
et supprimer toutes les montagnes, le lac et le ciel. Ainsi, la scène matMontagne.blend ne contient que
les matériaux que vous avez créés.

5. Vous avez déjà un script qui permet de créer la montagne, le lac, le ciel, la caméra et la ou les sources de lumière.
Ajouter une fonction raccrocheMats à ce script pour que, s’il est lancé dans la scène matMontagne.blend,
il puisse raccrocher ces matériaux sur les montagnes, le ciel et le lac. Ainsi, vous pouvez créer montagne.blend
(scène imposante) à partir de matMontagne.blend (scène minuscule).

2 Création de personnages ou d’objets à partir de photos (2 points)
Les opérations dans cette section sont à réaliser à la main et non par script. Dans une scène plaques.blend,

créer 10 plans à une face. Nous les appellerons des plaques par la suite. Attribuer à ces plaques un matériau transparent

3



et une texture de transparence ainsi qu’une texture de couleur de façon à représenter des arbres, des personnages ou
tout autre objet reconnaissable. Vous pouvez choisir les textures du répertoire detoures dans textures.tgz que
vous avez déjà utilisées en TP. Vous pouvez également en trouver d’autres si le cœur vous en dit. Inclure toutes les
images qui vous servent de texture dans votre répertoire de projet.

3 Répartition d’objets simples sur un polygone (7 points)
Dans une scène repart.blend, soit un polygone P ayant beaucoup de sommets à des hauteurs différentes.

Pour les figures de ce document, j’ai choisi un tore ayant 45000 sommets. On cherche à déterminer N positions
aléatoirement sur ce polygone entre l’altitude zmin et zmax. Dans un premier temps, on pourra répartir ces positions
de façon uniforme (cf figure 10). Dans un deuxième temps, on demande à ce qu’au niveau zmin la densité de points
soit maximale. Au delà de zmax, la densité des points doit être nulle. Entre les deux altitudes, la densité devra décroître
de façon exponentielle (cf figure 11). Je vous demande d’écrire ces fonctions dans un fichier appelé repart.py.

FIGURE 10 – 5000 positions répartis uniformément entre
zmin = 0 et zmax = 2

FIGURE 11 – 5000 positions avec une densité décroissant
exponentiellement entre zmin et zmax

3.1 Répartition uniforme
1. Écrire une fonction repartitionUniforme qui admet quatre paramètres : objet, le nom d’un objet

polygonal, un entier positif N et deux nombres zmin et zmax (avec zmin < zmax). Cette fonction retourne
une liste de N triplets représentant des sommets choisis au hasard sur la surface de objet. La hauteur de ces
positions devra être comprise entre zmin et zmax. Proposition d’algorithme : choisir des sommets au hasard
sur le polygone jusqu’à ce que la position obtenue soit comprise entre zmin et zmax.

2. Modifier cette fonction pour que chaque sommet ne soit choisi qu’une seule fois (si ce n’est pas le cas déjà).
Si tous les sommets compris entre zmin et zmax ont déjà été choisis, alors aucun triplet supplémentaire n’est
généré. Il faudra alors afficher un message pour informer l’utilisateur que la tâche demandée n’est pas réalisable
et lui indiquer le nombre de sommets choisis. Un algorithme de détection de doublons a une complexité qui
croît en o(n2). Tâchez de trouver un algorithme dont la complexité croît en o(n). (n étant le nombre de
positions à trouver). Si vous deviez représenter toutes ces positions, vous devriez obtenir une figure semblable
à la figure 10.

3.2 Répartition à densité décroissante
Dans cette section, nous souhaitons obtenir une plus forte densité en zmin, une densité nulle en zmax et une

décroissance exponentielle entre les deux. Aurement dit, la densité d’individus doit pouvoir être exprimée sous la
forme :

densite(z) = Ae−z/z0 (1)

où A et z0 sont des nombres à déterminer. z0 détermine la rapidité de la décroissance. Pour une faible valeur de z0, la
décroissance est rapide, alors que pour de grandes valeurs, elle est plus progressive. La constante A règle le nombre

4



total d’individus. Si vous avez des idées d’algorithmes aléatoires et qui produisent de tels résultats, sentez-vous libre
de les utiliser.

Ce qui suit est une proposition d’algorithme. En principe, une densité est exprimée en nombre d’individus par
unité de surface. Ici, en supposant que chaque face du polygone a, à peu près, la même surface, on mesurera la densité
en nombre d’individus par sommet. On s’intéresse à des situations où il y a moins d’individus que de sommets, donc,
la plupart du temps, la densité d en un point sera inférieure à 1. Une densité d < 1 en un sommet P signifie que ce
sommet a une probabilité d de porter un individu. Ainsi, pour décider si ce sommet doit porter un individu, il suffira
de tirer à pile ou face avec une probabilité d d’avoir pile. Si on obtient effectivement pile, alors le sommet est peuplé.
Sinon, il ne l’est pas.

1. Écrire une fonction pileOuFaceProbaP qui admet un paramètre p compris entre 0 et 1. Elle retourne
aléatoirement True ou False avec une probabilité p d’avoir True. Autrement dit :
— pour p=0, la fonction retourne toujours False ;
— pour p=1, la fonction retourne toujours True ;
— pour p=0.5, la fonction retourne True ou False avec la même probabilité ;
— pour p=0.8, la fonction retourne True avec une probabilité de 80% et False avec une probabilité de

20%.
Ces valeurs sont des exemples. Il n’est pas du tout nécessaire de distinguer ces 4 cas séparément dans votre
fonction. Pour tout vous dire, vous avez déjà quasiment écrit cette fonction dans le troisième TD d’Algorithmique
et Programmation 1.

2. Il reste à définir la densité de population à chaque sommet. Nous l’avions mentionné plus haut : z0 spécifie la
rapidité de la progression. On décide que la densité en zmin doit être 100 fois supérieure à la densité en zmax.
En déduire la valeur de z0. Je rappelle que, pour tout x et y réels, ex/ey = ex−y et que, par ailleurs, y = ex

si et seulement si x = ln(y). Écrire une fonction coefZ0 qui, à partir de deux paramètres zmin et zmax
retourne la valeur de z0.

3. On sait aussi que, si on fait la somme de toutes les densités à tous les sommets du polygone compris entre zmin

et zmax, on devrait obtenir la population totale N .∑
i

densite(yi) =
∑
i

Ae−zi/z0 = A
∑
i

e−zi/z0 = N (2)

Il s’ensuit que

A =
N∑

i e
−zi/z0

(3)

Écrire une fonction coefA qui admet cinq paramètres : objet, représentant le nom de l’objet polygonal à
peupler, un entier N représentant le nombre total d’individus qu’on souhaite avoir, et enfin, z0, zmin et zmax
trois nombres (avec zmax > zmin). La valeur de retour de cette fonction devra être le coefficient A donné par la
relation (3). Pour cela, cette fonction devra parcourir tous les sommets du polygone objet, calculer la hauteur
zi de chaque sommet, en déduire la valeur de e−zi/z0 et faire la somme de toutes ces valeurs d’exponentielle
pour tous les sommets. Ensuite, utiliser la relation (3) pour calculer le coefficient A et retourner sa valeur.

4. À présent, nous connaissons la densité de population pour chaque sommet du polygone. Cette densité est
exprimée par la relation (1). Écrire une fonction repartitionNonUniforme qui admet 6 paramètres :
objet, le polygone, N le nombre de positions à trouver sur ce polygone, coef_A, coef_z0, zmin et zmax
qui permettent de calculer la densité d’individu pour chaque valeur de z. Cette fonction devra retourner une
liste de N triplets représentant des positions de sommets de objet, dont la hauteur est comprise entre zmin et
zmax et dont la densité décroît exponentiellement. Pour cela, cette fonction parcourt tous les points de l’objet.
Pour chaque point, elle calcule la densité d (relation (1)). Elle utilise la fonction pileOuFaceProbaP avec
une probabilité d. Si celle-ci retourne True, alors on ajoute la position de ce sommet à la liste. Si vos calculs
sont justes, alors le nombre total d’individus obtenus devrait être approximativement égal à N .

5. Enfin écrire une fonction peuplement qui admet deux paramètres : positions, et plaques. Le premier
est une liste de triplets représentant une liste de positions, comme celles obtenues dans les questions précé-
dentes. Le second est une liste d’objets polygonaux dans la scène. Si vous avez fini la partie 2, cette liste pourra

5



être simplement la liste de vos plaques. Sinon, vous pourrez simplement créer une dizaine de plans à une face et
les mettre dans une liste. Cette fonction devra parcourir la liste des positions et, pour chaque position p, choisir
aléatoirement un objet dans plaques, le dupliquer et le placer la copie à la position p. Je vous demande de
tester cette fonction pour un nombre de positions p bien supérieur au nombre de plaques.

4 Synthèse (4 points)
Si vous avez réalisé les trois volets de ce projet, vous pouvez les réunir en un seul script projet.py et une seule

scène projet.blend contenant : les 10 plaques texturées représentant des objets ou des personnages ainsi que les
matériaux des montagnes, du lac et du ciel. Le script projet.py crée la caméra et les sources de lumière, le ciel, le
lac et les montagnes et y attache les matériaux, comme dans la section 1, puis, comme dans la section 3, elle calcule
N positions réparties entre zmin = 0 (le niveau du lac) et zmax ≈ Hmax/2. Pour chaque position p de cette liste, le
script choisira une plaque au hasard, la copiera et la placera au point p face à la camera. La figure 12 contient 5000
plaques. Je vous demande d’en placer au moins plusieurs dizaines.

À peu près la moitié des points de cette partie est dédiée aux réglages globales : la position que vous avez choisie
pour la caméra (plutôt que la position par défaut), le nombre et la position des lumières qui doivent permettre de
montrer le relief de la montagne et les personnages et enfin, le choix des échelles des textures. Nous avons choisi de
modéliser le relief de l’eau par une texture de noise. Il s’agit donc d’une mer calme. Donc la taille d’une vaguelette ne
peut pas être la même que celle d’un arbre ou celle d’une petite feuille.

Si vous avez fini cette partie, vous pouvez rendre seulement la scène projet.blend et projet.py.

5 Consignes
Avant le jeudi 21 décembre 2023 à 23h59, chacun de vous
devra mettre dans le dépôt Moodle appelé Rendu Projet une
archive (.zip ou .tgz) contenant :

— Toutes les textures que vous avez utilisées dans
votre projet ;

— Une ou plusieurs images correspondant au rendu fi-
nal de votre projet.

— (Si vous avez fini la partie 4) : la scène
projet.blend et le script projet.py ;

— (Si ce n’est pas le cas) : les scènes
(matMontagne.blend, plaques.blend et
repart.blend) et les scripts (paysage.py et
repart.py) correspondant aux parties que vous
avez abordées.

Les rendus en retard ne sont pas interdits, mais chaque jour
de retard diminuera la note de 3 points. Le vendredi 22 dé-
cembre 2023 aura lieu la dernière séance d’infographie 3D
du semestre. Chacun de vous devra me présenter son tra-
vail de façon individuelle pendant une soutenance de 7 mi-
nutes. Pendant cette séance, je pourrai éventuellement vous
demander de modifier certains aspects de votre projet. Je
vous demande de réserver votre créneau de rendez-vous sur
Moodle (Prise de rendez-vous pour le projet d’infographie
3D).

FIGURE 12 – Une montagne peuplée d’arbres

6


	Construction d'un terrain montagneux (7 points)
	Modélisation
	Shading

	Création de personnages ou d'objets à partir de photos (2 points)
	Répartition d'objets simples sur un polygone (7 points)
	Répartition uniforme
	Répartition à densité décroissante

	Synthèse (4 points)
	Consignes

