Université

Département d’Informatique
de Strasbourg Projet d’Infographie 3D CMI Image Iere année

Ce projet est divisé
en trois parties pouvant
étre traitées indépen-
damment les unes des
autres. Dans une qua-
triéme partie, on pourra
réunir le résultat des
trois premieres parties.
L’objectif final est de
créer un paysage mon-
tagneux avec un lac et
de peupler ce paysage
d’objets ou de person-
nages. Une grande den-
sité au niveau de ’eau
et plus clairsemé au
fur et & mesure qu’on
monte. Le baréme est
indicatif.

FIGURE 1 — Une montagne générée par I’algorithme décrit ci-dessous

1 Construction d’un terrain montagneux (7 points)

1.1 Modélisation
Vous écrirez les fonctions de cette section dans un fichier appelé paysage . py.

1. Ecrire une fonction hauteursAleatoires qui admet deux arguments : un objet polygonal objet et un
flottant hauteur. Cette fonction ne retourne aucune valeur. Elle parcourt tous les sommets de 1’objet donné
en parametre et ajoute a la hauteur (composante z) de chaque point une valeur aléatoirement choisie entre
—hauteur et hauteur.

2. Ecrire une fonction subdiviseAretes qui admet un argument : un objet polygonal objet. Cette fonction
ne retourne aucune valeur, mais elle subdivise chaque face de cet objet. Cette subdivision consiste & insérer
un sommet au milieu de chaque aréte et de chaque face. Ainsi chaque face est transformée en quatre faces
coplanaires.

3. En utilisant les fonctions ci-dessus, écrire une fonction creerMontagne admettant 4 parametres : une chaine
de caracteres nom, représentant le nom de I’objet a créer, un nombre largeur, un nombre hauteur et
un entier Nsubdiv. Etant donnés ces trois nombres, cette fonction devra créer une montagne de largeur
largeur de hauteur approximative hauteur et dont la résolution est déterminée par Nsubdiv. La valeur
de retour de cette fonction devra étre 1’objet créé. L’ algorithme a implémenter est le suivant :

L’ objet de départ est un carré (plan) dont le nom est la valeur du parametre nom. Ce carré devra étre de
cOté largeur avec 4 sommets. A Nsubdiv reprises, il faudra faire les opérations suivantes :

(a) Parcourir tous les sommets de 1’objet et déplacer ces sommets de facon aléatoire le long de 1’axe z.
Le déplacement est un nombre choisi aléatoirement entre ~hauteur et hauteur.

(b) Subdiviser chaque face de 1’objet.

(¢) Diminuer hauteur.



Comment allez-vous diminuer hauteur ? En soustrayant une valeur a chaque itération ? en divisant par une
valeur ? Autrement ? L’algorithme est déroulé dans les figures qui suivent.

FIGURE 2 — Départ : un plan de 4 sommets FIGURE 3 — Déplacement aléatoire d de chaque sommet
(avec d € [—hauteur, hauteur])

FIGURE 4 — Subdivision FIGURE 5 — Diminuer hauteur. Déplacement aléatoire d
de chaque sommet (avec d € [—hauteur, hauteur]).

FIGURE 6 — Subdivision FIGURE 7 — Diminuer encore hauteur et déplacement d
de chaque sommet (avec d € [—hauteur, hauteur]).

FIGURE 8 — Subdivision FIGURE 9 — Résultat apres 8 itérations en partantde h = 7

4. Que se passe-t-il lorsque vous lancez cet algorithme plusieurs fois ? Est-ce que vous obtenez la méme forme
de montagne ? Faites de facon a ce que, lorsque vous aurez obtenu une forme de montagne satisfaisante, vous
puissiez, a chaque fois, obtenir la méme forme. Indication : & quoi sert la fonction seed du module random?



5. Ecrire une fonction creerLac, admettant un parametre un flottant 1argeur. Cette fonction devra créer un
plan ayant une face dont le nom sera Lac. Ce plan représentera la surface d’un lac. La valeur de retour de cette
fonction sera I’objet ainsi créé. Il ne sera pas nécessaire de subdiviser le plan du lac pour avoir des vagues.

6. De la méme facon, écrire une fonction creerCiel prenant en argument un flottant rayon. Cette fonction
devra créer, une sphere appelée ciel de rayon supérieur ou égal a 100 représentant le ciel. La valeur de retour
sera 1’objet effectivement créé.

7. A présent, on cherche 2 composer le paysage. Vous appelerez les fonctions creerLac et creerCiel une
seule fois et vous laisserez ces objets en (0,0, 0). Par contre, je vous demande d’appeler creerMontagne
plusieurs fois, avec des formes différentes, et de placer les différents objets obtenus a des positions, orientations
et échelles qui, pour vous, produisent un paysage intéressant. Créer une caméra pour matérialiser le point de
vue que vous avez choisi. Créer également une ou plusieurs sources de lumiere qui mettent le mieux en valeur
le relief de votre paysage. Il n’est absolument nécessaire que vous assembliez ces différents massifs pour qu’ils
ne forment qu’un objet. Vous pouvez tres bien les laisser bien séparés. Mais, vus depuis votre caméra, ils
doivent sembler former un paysage cohérent. De méme, le bord du carré représentant le lac ne doit pas étre
visible depuis la caméra.

8. Sauvegarder la scene dans un fichier appelé mont agne .blend et noter la place qu’elle occupe sur le disque.
Un des grands intéréts de la génération des modeles par script (appelée modélisation procédurale) est qu’elle
évite de stocker de lourds modeles sur le disque. Il suffit de les régénérer a chaque fois a partir d’un script. Et le
volume d’un script sur un disque est minime (quelques kilobytes). Je vous demande de noter tous les réglages
et les opérations que vous avez faites pour que tout ce qui précede puisse étre régénéré par script. Si vous
réussissez cette question, il ne sera pas nécessaire de me rendre la scéne montagne .blend mais seulement
le script qui a permis de la générer.

1.2 Shading

Créer manuellement (et non par script) des matériaux et des textures pour les montagnes, le lac et le ciel. Je vous
demande de donner a vos matériaux des noms porteurs de sens (par exemple mat_ciel oumat_montagnel).

1. Pour le ciel, concevoir un matériau et une texture de facon a ce que I’aspect du ciel ne dépende pas de I’intensité
ou de la position des sources de lumiere ;

2. Pour I’eau, concevoir un matériau transparent avec de la réfraction et de la réflexion. Ne pas utiliser de texture
de couleur, mais seulement une texture procédurale de type Noise pour créer des vaguelettes. Je vous demande
de régler la fréquence et I’amplitude de ce bruit pour étre en adéquation avec I’échelle de la sceéne et, en
particulier, avec I’échelle des personnages ou objets que vous y aurez placés (section ).

3. Pour les montagnes, concevoir une texture de couleur et une texture de normal (bas-relief). La texture de
couleur peut étre une texture explicite (une image) mais la texture de relief doit étre une texture procédurale de
noise permettant de reproduire des strates comme sur la figure|[T]

4. Il n’est pas du tout impossible de générer tous les matériaux, textures et graphes de rendu par script, mais cette
tache peut s’avérer assez fastidieuse. C’est la raison pour laquelle je vous propose de les conserver dans la
scene. Donc une fois que vous étes satisfaits de vos matériaux, sauvegarder la scéne sous matMontagne .blend
et supprimer toutes les montagnes, le lac et le ciel. Ainsi, la scene matMontagne.blend ne contient que
les matériaux que vous avez créés.

5. Vous avez déja un script qui permet de créer la montagne, le lac, le ciel, la caméra et la ou les sources de lumiere.
Ajouter une fonction raccrocheMat s a ce script pour que, s’il est lancé dans la scéne matMontagne .blend,
il puisse raccrocher ces matériaux sur les montagnes, le ciel et le lac. Ainsi, vous pouvez créermontagne .blend
(scéne imposante) a partir de matMontagne .blend (scéne minuscule).

2 Création de personnages ou d’objets a partir de photos (2 points)

Les opérations dans cette section sont a réaliser a la main et non par script. Dans une scéne plaques.blend,
créer 10 plans a une face. Nous les appellerons des plaques par la suite. Attribuer a ces plaques un matériau transparent



et une texture de transparence ainsi qu’une texture de couleur de fagon a représenter des arbres, des personnages ou
tout autre objet reconnaissable. Vous pouvez choisir les textures du répertoire defoures dans textures.tgz que
vous avez déja utilisées en TP. Vous pouvez également en trouver d’autres si le cceur vous en dit. Inclure toutes les
images qui vous servent de texture dans votre répertoire de projet.

3 Répartition d’objets simples sur un polygone (7 points)

Dans une scéne repart .blend, soit un polygone P ayant beaucoup de sommets a des hauteurs différentes.
Pour les figures de ce document, j’ai choisi un tore ayant 45000 sommets. On cherche a déterminer N positions
aléatoirement sur ce polygone entre I’altitude 2., €t 2;q,. Dans un premier temps, on pourra répartir ces positions
de fagon uniforme (cf figure [T0). Dans un deuxiéme temps, on demande a ce qu’au niveau zy,;,, la densité de points
soit maximale. Au dela de z;,4., la densité des points doit étre nulle. Entre les deux altitudes, la densité devra décroitre
de facon exponentielle (cf figure[TT). Je vous demande d’écrire ces fonctions dans un fichier appelé repart . py.

FIGURE 10 — 5000 positions répartis uniformément entre FIGURE 11 — 5000 positions avec une densité décroissant
Zmin = 0 €t Zpqe = 2 exponentiellement entre 2,5, et Zyqx

3.1 Répartition uniforme

1. Ecrire une fonction repartitionUniforme qui admet quatre paramétres : objet, le nom d’un objet
polygonal, un entier positif N et deux nombres zmin et zmax (avec zmin < zmax). Cette fonction retourne
une liste de N triplets représentant des sommets choisis au hasard sur la surface de ob jet. La hauteur de ces
positions devra étre comprise entre zmin et zmax. Proposition d’algorithme : choisir des sommets au hasard
sur le polygone jusqu’a ce que la position obtenue soit comprise entre zmin et zmax.

2. Modifier cette fonction pour que chaque sommet ne soit choisi qu’une seule fois (si ce n’est pas le cas déja).
Si tous les sommets compris entre zmin et zmax ont déja été choisis, alors aucun triplet supplémentaire n’est
généré. Il faudra alors afficher un message pour informer 1’ utilisateur que la tiche demandée n’est pas réalisable
et lui indiquer le nombre de sommets choisis. Un algorithme de détection de doublons a une complexité qui
croit en o(n?). Tachez de trouver un algorithme dont la complexité croit en o(n). (n étant le nombre de
positions a trouver). Si vous deviez représenter toutes ces positions, vous devriez obtenir une figure semblable

a la figure[T0]

3.2 Répartition a densité décroissante

Dans cette section, nous souhaitons obtenir une plus forte densité en z,,;,, une densité nulle en z;,,, et une
décroissance exponentielle entre les deux. Aurement dit, la densité d’individus doit pouvoir étre exprimée sous la
forme :

densite(z) = Ae™*/%0 (1)

ol A et zy sont des nombres a déterminer. zy détermine la rapidité de la décroissance. Pour une faible valeur de zy, la
décroissance est rapide, alors que pour de grandes valeurs, elle est plus progressive. La constante A régle le nombre



total d’individus. Si vous avez des idées d’algorithmes aléatoires et qui produisent de tels résultats, sentez-vous libre
de les utiliser.

Ce qui suit est une proposition d’algorithme. En principe, une densité est exprimée en nombre d’individus par
unité de surface. Ici, en supposant que chaque face du polygone a, a peu pres, la méme surface, on mesurera la densité
en nombre d’individus par sommet. On s’intéresse a des situations ol il y a moins d’individus que de sommets, donc,
la plupart du temps, la densité d en un point sera inférieure a 1. Une densité d < 1 en un sommet P signifie que ce
sommet a une probabilité d de porter un individu. Ainsi, pour décider si ce sommet doit porter un individu, il suffira
de tirer a pile ou face avec une probabilité d d’avoir pile. Si on obtient effectivement pile, alors le sommet est peuplé.
Sinon, il ne I’est pas.

1.

Ecrire une fonction pileOuFaceProbaP qui admet un paramétre p compris entre O et 1. Elle retourne

aléatoirement True ou False avec une probabilité p d’avoir True. Autrement dit :

— pour p=0, la fonction retourne toujours False;

— pour p=1, la fonction retourne toujours True;

— pour p=0. 5, la fonction retourne True ou False avec la méme probabilité;

— pour p=0. 8, la fonction retourne True avec une probabilité de 80% et False avec une probabilité de
20%.

Ces valeurs sont des exemples. Il n’est pas du tout nécessaire de distinguer ces 4 cas séparément dans votre

fonction. Pour tout vous dire, vous avez déja quasiment écrit cette fonction dans le troisieme TD d’Algorithmique

et Programmation 1.

Il reste a définir la densité de population a chaque sommet. Nous 1’avions mentionné plus haut : z, spécifie la
rapidité de la progression. On décide que la densité en z,,;, doit &tre 100 fois supérieure a la densité en 2,4,
En déduire la valeur de z,. Je rappelle que, pour tout x et y réels, e®/e¥ = e* Y et que, par ailleurs, y = e*
si et seulement si z = [n(y). Ecrire une fonction coefz0 qui, 4 partir de deux paramétres zmin et zmax
retourne la valeur de zg.

On sait aussi que, si on fait la somme de toutes les densités a tous les sommets du polygone compris entre 2,
et Zmaq, ON devrait obtenir la population totale V.

Zdensite(yi) = ZAe_ZT‘/ZO = AZe_Zi/z“ =N (2)

Il s’ensuit que
N

N > ezl

Ecrire une fonction coe fA qui admet cing paramétres : objet, représentant le nom de 1’objet polygonal a
peupler, un entier N représentant le nombre total d’individus qu’on souhaite avoir, et enfin, z0, zmin et zmax
trois nombres (avec zmax > zmin). La valeur de retour de cette fonction devra étre le coefficient A donné par la
relation (3). Pour cela, cette fonction devra parcourir tous les sommets du polygone ob jet, calculer la hauteur
zi de chaque sommet, en déduire la valeur de e~%/%0 et faire la somme de toutes ces valeurs d’exponentielle
pour tous les sommets. Ensuite, utiliser la relation (3)) pour calculer le coefficient A et retourner sa valeur.

A 3)

A présent, nous connaissons la densité de population pour chaque sommet du polygone. Cette densité est
exprimée par la relation . Ecrire une fonction repartitionNonUniforme qui admet 6 paramétres :
objet, le polygone, N le nombre de positions a trouver sur ce polygone, coef_A, coef_z0, zmin et zmax
qui permettent de calculer la densité d’individu pour chaque valeur de z. Cette fonction devra retourner une
liste de N triplets représentant des positions de sommets de ob jet, dont la hauteur est comprise entre zmin et
zmax et dont la densité décroit exponentiellement. Pour cela, cette fonction parcourt tous les points de 1’objet.
Pour chaque point, elle calcule la densité d (relation (I))). Elle utilise la fonction pileOuFaceProbaP avec
une probabilité d. Si celle-ci retourne True, alors on ajoute la position de ce sommet a la liste. Si vos calculs
sont justes, alors le nombre total d’individus obtenus devrait étre approximativement égal a N.

Enfin écrire une fonction peuplement qui admet deux parametres : positions, et plaques. Le premier
est une liste de triplets représentant une liste de positions, comme celles obtenues dans les questions précé-
dentes. Le second est une liste d’objets polygonaux dans la scéne. Si vous avez fini la partie[2] cette liste pourra



étre simplement la liste de vos plaques. Sinon, vous pourrez simplement créer une dizaine de plans a une face et
les mettre dans une liste. Cette fonction devra parcourir la liste des positions et, pour chaque position p, choisir
aléatoirement un objet dans plaques, le dupliquer et le placer la copie a la position p. Je vous demande de
tester cette fonction pour un nombre de positions p bien supérieur au nombre de plaques.

4 Synthese (4 points)

Si vous avez réalisé les trois volets de ce projet, vous pouvez les réunir en un seul script projet . py et une seule
scene projet .blend contenant : les 10 plaques texturées représentant des objets ou des personnages ainsi que les
matériaux des montagnes, du lac et du ciel. Le script projet . py crée la caméra et les sources de lumiere, le ciel, le
lac et les montagnes et y attache les matériaux, comme dans la section [T} puis, comme dans la section 3] elle calcule
N positions réparties entre z,,;,, = 0 (le niveau du lac) et 2,40 & Hnas /2. Pour chaque position p de cette liste, le
script choisira une plaque au hasard, la copiera et la placera au point p face a la camera. La figure [T2] contient 5000
plaques. Je vous demande d’en placer au moins plusieurs dizaines.

A peu pres la moitié des points de cette partie est dédiée aux réglages globales : la position que vous avez choisie
pour la caméra (plutdt que la position par défaut), le nombre et la position des lumieres qui doivent permettre de
montrer le relief de 1a montagne et les personnages et enfin, le choix des échelles des textures. Nous avons choisi de
modéliser le relief de I’eau par une texture de noise. Il s’agit donc d’une mer calme. Donc la taille d’une vaguelette ne
peut pas étre la méme que celle d’un arbre ou celle d’une petite feuille.

Si vous avez fini cette partie, vous pouvez rendre seulement la scéne projet .blend et projet.py.

5 Consignes

Avant le jeudi 21 décembre 2023 a 23h59, chacun de vous
devra mettre dans le dépot Moodle appelé Rendu Projet une
archive (.zip ou .tgz) contenant :
— Toutes les textures que vous avez utilisées dans
votre projet;
— Une ou plusieurs images correspondant au rendu fi-
nal de votre projet.

— (Si vous avez fini la partie f) : la scene
projet.blendetle script projet.py;
— (Si ce n’est pas le cas) : les scenes

(matMontagne.blend, plaques.blendet
repart.blend) et les scripts (paysage.py et
repart .py) correspondant aux parties que vous
avez abordées.
Les rendus en retard ne sont pas interdits, mais chaque jour
de retard diminuera la note de 3 points. Le vendredi 22 dé-
cembre 2023 aura lieu la derniére séance d’infographie 3D
du semestre. Chacun de vous devra me présenter son tra-
vail de facon individuelle pendant une soutenance de 7 mi-
nutes. Pendant cette séance, je pourrai éventuellement vous
demander de modifier certains aspects de votre projet. Je
vous demande de réserver votre créneau de rendez-vous sur
Moodle (Prise de rendez-vous pour le projet d’infographie
3D).

FIGURE 12 — Une montagne peuplée d’arbres



	Construction d'un terrain montagneux (7 points)
	Modélisation
	Shading

	Création de personnages ou d'objets à partir de photos (2 points)
	Répartition d'objets simples sur un polygone (7 points)
	Répartition uniforme
	Répartition à densité décroissante

	Synthèse (4 points)
	Consignes

